A snapshot of some notable projects; my past experiences are on LinkedIn. I'd love to hear from you, feel free to drop me an email!
Understanding customer movement within retail spaces is essential for optimizing store layouts. Real-world trajectory data can provide highly accurate insights, but collecting it is costly and often infeasible for many retailers. Heuristics such as Travelling Salesman Problem (TSP) and Probabilistic Nearest Neighbours (PNN) are commonly used as inexpensive approximations, but actual customer trajectories deviate by an average of 28% from shortest paths, highlighting a tradeoff between accuracy and practicality. We propose an agent-based modelling framework that casts customer trajectory prediction as a maximum entropy reinforcement learning (RL) problem, balancing reward maximization with stochasticity to better reflect customers with bounded rationality. Using real-world trajectory data from a convenience store, we show that RL-generated trajectories align more closely with customer behaviour than TSP and PNN, providing more accurate estimates of impulse purchase rates and shelf traffic densities. Furthermore, only RL-based predictions yield repositioning decisions for impulse products that align with those derived from actual trajectory data, resulting in comparable estimated profit gains. Our work demonstrates that RL provides a practical, behaviourally grounded alternative that bridges the gap between oversimplified heuristics and data-intensive approaches, making accurate layout optimization more accessible. To encourage further research, the source code is available on GitHub.
To keep the paper focused on its core contributions, store representations were deliberately simplified, and trajectory comparisons are presented as static heatmaps. While informative, customer interaction with a store is fundamentally a human experience. To fully understand hotspots in heatmaps and the gaps between actual human trajectories and those predicted by algorithms, one needs to visualize the heatmaps and paths firsthand.